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The other analogy as was treated in Control Engineering, and is useful for Euler-
Lagrange modeling.

Canonical forms

The state-space representation for a given transfer function is not unique, i.e., there are infinite-
number of possibilities to express a given transfer function in state-space form. However, there
are several forms that can be helpful in the design of controller or observer. Let us consider the
following general transfer function for single-input single-output system:

Y (s)

U(s)
=
b0s

n + b1s
n−1 + · · ·+ bn−1s+ bn

sn + a1sn−1 + · · ·+ an−1s+ an
. (1)

For this transfer function, the state-space representation in canonical observable form is
given by 

ẋ1
ẋ2
...
ẋn

 =


0 0 · · · 0 −an
1 0 · · · 0 −an−1
0 1 · · · 0 −an−2
...

...
. . .

...
...

0 0 · · · 1 −a1



x1
x2
...
xn

+


bn − anb0

bn−1 − an−1b0
...

b1 − a1b0

u

y =
[
0 0 · · · 0 1

]

x1
x2
...

xn−1
xn

+ b0u.

(2)

On the other hand, the state-space representation in the canonical controllable form is given by
ẋ1
ẋ2
...
ẋn

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an −an−1 −an−2 · · · a1



x1
x2
...
xn

+


0
0
...
0
1

u

y =
[
bn − anb0 bn−1 − an−1b0 · · · b2 − a2b0 b1 − a1b0

]

x1
x2
...

xn−1
xn

+ b0u.

(3)
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Z-transform.

Denote by Z {u(n)} the Z-transform of discrete-time signal u(n) where n = 0, 1, . . ..

� Unit step signal u(n): Z {u(n)} =
1

1− z−1

� Time-shifting property: Z {u(n− k)} = z−kU(z)

Transformation from s-domain to z-domain

� The bilinear transformation: s 7→ 2

T

1− z−1

1 + z−1

� The backward-Euler transformation: s 7→ 1

T
(1− z−1)

Optimal state feedback control design(LQR)

The Riccati equation, that is related to the optimal state feedback, reads as

ATP + PA− PBR−1BTP +Q = 0, (4)

where Q and R are related to the cost function

J =

∫ ∞
0

xT (τ)Qx(τ) + uTRu(τ)dτ. (5)

The optimal state feedback controller is given by u(t) = −R−1BTPx(t).

State observer design

For a state-space system described by

ẋ = Ax+Bu

y = Cx+Du,
(6)

where x is the actual state and y is the measured signal, a state observer for such system has the
following structure

˙̂x = Ax̂+Bu+ L(y − ŷ)

ŷ = Cx̂,
(7)

where x̂ is the estimated state and y is the corresponding estimated output.
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Transfer function of time delay

For a time delay operator

y(t) = u(t− T ) (8)

where T is the delay time, its Laplace transform is given by

Y (s)

U(s)
= e−sT . (9)

From this transfer function, the corresponding Bode plot is given by unity amplitude for all
frequencies and the phase plot is linear with respect to the frequency, i.e.,

φ(ω) = −ωT, (10)

for all frequencies ω.
The first order Padé approximation of the delay transfer function e−ωT is given by

e−ωT ≈
1− T

2
s

1 + T
2
s
. (11)
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Exercises

Exercise 1 (15 points)
Consider the robotic vacuum system iRobot Roomba as shown in figure 1

Figure 1: The iRobot Roomba system

(a) (7 points) Identify two possible user demands, two possible functional requirements, and
two possible design parameters.

Solution:

� User demands

– Cheap

– Silent

– Quick

– Battery autonomy

– Auto-docking for automatic recharge

– Possibility to clean several surfaces and corners.

� Functional requirements

– The capacity of the dust-tank should be of x liters

– The autonomy of the robot should be of x- hours

– The lifetime of the components should be of x-years

– The noise produced by the robot should be of x-dB.

� Design parameters

– Sensors to detect position and avoid collisions

– Actuator to ensure proper and efficient cleaning.

– The outer material should be hard enough to sustain some collisions.

– Size.
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(b) (8 points) Provide the blocks for the Mechatronic design cycle (V-diagram) for the design
of the iRobot Roomba system.

Solution: The V-diagram looks like follows

1. User demands and functional requirements

2. Design parameters

3. Overall design with component specifications and integration plan.

4. CAD/CAM/CAE or even mathematical modeling.

5. Design of specific components as the sensors and actuators.

6. Prototyping of the cleaning mechanism and/or the localization interface.

7. Integration of some components and subsystems such as the wheels and steering
system.

8. Testing of durability, efficiency, quickness, etc

9-10 Full combination and integration of software and hardware.

11 Test predetermined instructions, cleaning patterns, cleaning capabilities, collision
avoidance, etc.
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12 Test in real environment. Test robustness of the robot and compare with
specifications.

13 Production
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Exercise 2 (20 TOTAL+5 bonus points)
Consider a pendulum supported on an inclined plane as shown in Figure 2

M

•m

l

α

θ

x

Figure 2: A pendulum supported on an inclined plane

The mass M is free to slide down the frictionless plane inclined at an angle α. A pendulum of
length l and mass m hangs from M . (Assume that M extends beyond the side of the inclined
plane, so the pendulum can hang down).

(a) (12 points) Find the equations of motion via the Euler-Lagrange method. Recall that the
equations of motion are obtained via the formula

d

dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) = −∂D

∂q̇
+Gu, (12)

where L is the Lagrangian, D the Rayleigh dissipation function, and G the input matrix.

Hint: The position of the block is given by (xM , yM) = (x cosα,−x sinα), while the
position of the pendulum is given by (xm, ym) = (xM + l sin θ, yM − l cos θ).

Solution: From the figure, let x be the coordinate of the block M along the plane
and θ the angle of the pendulum. The coordinates of the block are

(xM , yM) = (x cosα,−x sinα), (13)

while the coordinates of the pendulum are

(xm, ym) = (xM + l sin θ, yM − l cos θ)

= (x cosα + l sin θ,−x sinα− l cos θ).
(14)

To obtain the velocities of the block M and the pendulum m we differentiate the
positions obtaining

v2M = ẋ2M + ẏ2M = (ẋ cosα)2 + (−ẋ sinα)2

= ẋ2.

v2m = ẋ2m + ẏ2m = (ẋ cosα + lθ̇ cos θ)2 + (−ẋ sinα + lθ̇ sin θ)2

= ẋ2 + l2θ̇2 + 2ẋθ̇l(cosα cos θ − sinα sin θ).

(15)

The Kinetic energy is given by

K =
1

2
Mv2M +

1

2
mv2m

=
1

2
Mẋ2 +

1

2
m
(
ẋ2 + l2θ̇2 + 2ẋθ̇l(cosα cos θ − sinα sin θ)

) (16)
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The Potential energy is given by

P = MgyM +mgym = Mg(−x sinα) +mg(−x sinα− l cos θ))

= −(M +m)gx sinα−mgl cos θ.
(17)

Then the Lagrangian L = K − P is given by

L = K − P

=
1

2
Mẋ2 +

1

2
m
(
ẋ2 + l2θ̇2 + 2ẋθ̇l(cosα cos θ − sinα sin θ)

)
+ (M +m)gx sinα +mgl cos θ.

(18)

Now we have the partial derivatives

∂L

∂ẋ
= (M +m)ẋ+mlθ̇(cosα cos θ − sinα sin θ)

∂L

∂θ̇
= ml2θ̇ +mlẋ(cosα cos θ − sinα sin θ)

∂L

∂x
= (M +m)g sinα

∂L

∂θ
= mlẋθ̇(− cosα sin θ − sinα cos θ)−mgl sin θ,

(19)

and the time derivatives

d

dt

(
∂L

∂ẋ

)
= (M +m)ẍ+mlθ̈(cosα cos θ − sinα sin θ)−mlθ̇2(cosα sin θ + sinα cos θ)

d

dt

(
∂L

∂θ̇

)
= ml2θ̈ +mlẍ(cosα cos θ − sinα sin θ) +mlẋθ̇(− cosα sin θ − sinα cos θ).

(20)

Therefore the equations of motion read as

(M +m)ẍ+ml

θ̈ (cosα cos θ − sinα sin θ)︸ ︷︷ ︸
cos(θ+α)

−θ̇2 (cosα sin θ + sinα cos θ)︸ ︷︷ ︸
sin(θ+α)

 = (M +m)g sinα

ml2θ̈ +mlẍ (cosα cos θ − sinα sin θ)︸ ︷︷ ︸
cos(θ+α)

= −mgl sin θ.

(21)

(b) (8 points) Write down the energy storing elements and the physical variables associated
to them. Afterwards, indicate which and how many state-space variables are minimally

Page 11



Name: Student ID:

necessary to describe the system provided that we are interested in the position of the
pendulum θ. Motivate your answer.

Solution: The two energy storing elements are the masses (of the block and the
pendulum). The related physical variables are their velocities vM and vm respectively.
In principle these two variables would be enough to describe the system, however since
we are explicitely asked to also consider the position of the pendulum θ, we conclude
that the three minimal variables to describe the system are (ẋ, θ, θ̇).

Another reasoning: since the position is not in the Equations of motion we conclude
that the three states (ẋ, θ, θ̇) are enough to describe the system.

(c) (5 bonus points) An equilibrium point corresponds to θ̈ = θ̇ = 0. Assume the the slope is
infinitely long. What is the corresponding equilibrium value of θ?

Hint: Substitute θ̈ = θ̇ = 0 into the equations of motion obtained above and try to obtain
θ. You can also use your imagination and motivate your answer with physical arguments.

Solution: For the bonus points we have the relations

sinα(cosα cos θ − sinα sin θ) = − sin θ

sinα cosα cos θ − sin2 α sin θ = − sin θ

sinα cosα cos θ = sin θ(1− sin2 θ)

sinα cos θ = − sinα cosα

tanα = − tan θ.

(22)

Then θ = {−α,−α + π}.
The physical interpretation is evident...
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Exercise 3 (20 TOTAL points)
Suppose you are given a system with transfer function

G(s) =
Y (s)

U(s)
=

2

s2 + 3s+ 4
, (23)

where U(s) is the Laplace transform of the input u, and Y (s) is the Laplace transform of the
output y.

(a) (2 points) Is the plant stable or unstable? Motivate your answer.

Solution: The plant is stable because its characteristic polynomial has roots

s =
−3±

√
−7

2
. (24)

(b) (2 points) What is the corresponding differential equation of the plant?

Solution:

ÿ(t) + 3ẏ(t) + 4y(t) = 2u(t). (25)

(c) (8 points) Design a PID controller (its transfer function is C(s) = Kp + sKd +
1

s
Ki) such

that the closed-loop system is stable and the corresponding characteristic polynomial has
roots at {−1,−2,−3}, this is p(s) = (s+ 1)(s+ 2)(s+ 3).

Solution: The closed-loop characteristic polynomial can be computed by the numera-
tor of 1+G(s)C(s) (the sensitivity transfer function of the closed loop transfer function
can equivalently be used). With this we obtain the characteristic

s3 + (3 + 2Kd)s
2 + (4 + 2Kp)s+ 2Ki. (26)

On the other hand, the required closed-loop characteristic polynomial is

(s+ 1)(s+ 2)(s+ 3) = s3 + 6s2 + 11s+ 6. (27)

The gains of the controller are obtained from (26) and (27):

s3 + (3 + 2Kd)s
2 + (4 + 2Kp)s+ 2Ki = s3 + 6s2 + 11s+ 6. (28)

Therefore Kp =
7

2
, Kd =

3

2
, Ki = 3.
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(d) (8 points) Find the corresponding discrete-time controller C(z) related to the controller
C(s) obtained in (c). For this you can use either the bilinear or the backward Euler
approximation with a sampling time of T = 2s. Determine the corresponding difference
equation.

Solution:

The controller now reads as

C(s) =
7

2
+

3

2
s+

3

s
. (29)

� Using the backward Euler approximation we have s 7→ 1

2
(1− z−1). Then

C(z) =
7

2
+

3

4
(1− z−1) +

6

1− z−1

=
7
2
(1− z−1) + 3

4
(1− z−1)2 + 6

1− z−1

=
7
2
(1− z−1) + 3

4
(1− 2z−1 + z−2) + 6

1− z−1

=
3
4
z−2 − 5z−1 + 41

4

1− z−1

(30)

Now recall that for a controller we have the relation U(z) = C(z)E(z) and
therefore the corresponding difference equation reads as

U(k)− U(k − 1) =
41

4
E(k)− 5E(k − 1) +

3

4
E(k − 2). (31)

� Using the bilinear approximation we have s 7→ 1− z−1

1 + z−1
. Then

C(z) =
7

2
+

3

2

1− z−1

1 + z−1
+ 3

1 + z−1

1− z−1

=
7
2
(1− z−2) + 3

2
(1− z−1)2 + 3(1 + z−1)2

1− z−2

=
z−2 + 3z−1 + 8

1− z−2
.

(32)

Now recall that for a controller we have the relation U(z) = C(z)E(z) and
therefore the corresponding difference equation reads as

U(k)− U(k − 2) = 8E(k) + 3E(k − 1) + E(k − 2) (33)
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Exercise 4 (30 TOTAL points)
Suppose that a transfer function of a DC motor with a voltage input u to the measurement
output y (which, in this case, is the angular displacement of the motor) is given by

Y (s)

U(s)
=

2

(s+ 2)(s+ 3)
. (34)

(a) (5 points) Define the state variables (x1, x2) = (y, ẏ). Write down a state space equation
which corresponds to the given transfer function.

Solution: There are many ways to write a state space equation related to the transfer
function.

� The canonical controllable form would read as

[
ẋ1
ẋ2

]
=

[
0 1
−6 −5

] [
x1
x2

]
+

[
0
1

]
u

y =
[
2 0

] [x1
x2

] (35)

� The canonical observable form would read as

[
ẋ1
ẋ2

]
=

[
0 −6
1 −5

] [
x1
x2

]
+

[
2
0

]
u

y =
[
0 1

] [x1
x2

] (36)

� The corresponding differential equation would read as ***(Most probably students
will use this form)

ÿ(t) + 5ẏ(t) + 6y(t) = 2u(t). (37)

In this case defining the state space variables (x1, x2) = (y, ẏ) we would obtain
the state space equation[

ẋ1
ẋ2

]
=

[
0 1
−6 −5

] [
x1
x2

]
+

[
0
2

]
u

y =
[
1 0

] [x1
x2

] (38)
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(b) (10 points) Design an optimal state feedback controller which minimizes the following
cost function

J =

∫ ∞
0

5x21(τ) + 6x1(τ)x2(τ) + 3x22(τ) + 13u2(τ)dτ (39)

Solution: Note that

Q =

[
5 3
3 3

]
, R = 13. (40)

Now we have to solve the Riccati equation

ATP + PA− PBR−1BTP +Q = 0. (41)

� In the case of the controllable canonical form we have

A =

[
0 1
−6 −5

]
, B =

[
0
1

]
. (42)

The solution of the Riccati equation reads as

P ≈
[
1.38 0.42
0.42 0.38

]
. (43)

Then the corresponding optimal controller gain is given by

u = −Kx = −BTR−1Px ≈ −
[
0.033 0.03

]
x. (44)

� In the case of the observable canonical form we have

A =

[
0 −6
1 −5

]
, B =

[
2
0

]
. (45)

The solution of the Riccati equation reads as

P ≈
[

2.4 −1.61
−1.61 2.16

]
. (46)

Then the corresponding optimal controller gain is given by

u = −Kx = −BTR−1Px ≈ −
[
0.37 −0.25

]
x. (47)
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� In the third option we have

A =

[
0 1
−6 −5

]
, B =

[
0
2

]
(48)

The solution of the Riccati equation reads as

P ≈
[
1.38 0.41
0.41 0.38

]
. (49)

Then the corresponding optimal controller gain is given by

u = −Kx = −BTR−1Px ≈ −
[
0.063 0.058

]
x. (50)

In any case, we have that the matrix (A−BK) is Hurwitz and that the function J is
minimized.

(c) (2 points) What is the convergence rate of the plant? Motivate your answer.

Solution: Since the eigenvalues of the plant are −2,−3, we know that the convergence
rate is given by the “slowest” eigenvalue or the one with smaller absolute value.
Therefore the convergence rate of the plant is 2.

(d) (10 points) Suppose that the measurement of the angular velocity is not available. Design
a state observer that can provide an estimate of the angular velocity with a prescribed
(exponential) convergence rate of 25 (e.g., |x(t)− x̂(t)| ≤ |x(0)− x̂(0)| exp(−25t) where
x, x̂ are the state and the estimated state, respectively).

Solution: Let L =

[
l1
l2

]
. From the desired observer convergence rate let us chose the

eigenvalues of the closed loop matrix A− LC at −25,−25. This is that the desired
closed loop characteristic polynomial reads as p(λ) = λ2 + 50λ+ 625. Then

� For the state-space equation written in controllable canonical form we have

A =

[
0 1
−6 −5

]
, C =

[
2 0

]
. (51)

Therefore

A− LC =

[
−2l1 1
−6− 2l2 −5

]
, (52)
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and the corresponding characteristic polynomial is given by

λ2 + (5 + 2l1)λ+ 10l1 + 6 + 2l2. (53)

Then from the equality

λ2 + (5 + 2l1)λ+ 10l1 + 6 + 2l2 = λ2 + 50λ+ 625, (54)

we conclude that

l1 = 22.5, l2 = 197. (55)

� For the state-space equation written in observable canonical form we have

A =

[
0 −6
1 −5

]
, C =

[
0 1

]
. (56)

Therefore

A− LC =

[
0 −6− l1
1 −5− l2

]
, (57)

and the corresponding characteristic polynomial is given by

λ2 + (5 + 2l2)λ6 + 1l1. (58)

Then from the equality

λ2 + (5 + l2)λ+ 6 + l1 = λ2 + 50λ+ 625, (59)

we conclude that

l1 = 619, l2 = 45. (60)

� For the third state-space equation we have

A =

[
0 1
−6 −5

]
, C =

[
1 0

]
. (61)

Therefore

A− LC =

[
−l1 1
−6− l2 −5

]
, (62)
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and the corresponding characteristic polynomial is given by

λ2 + (5 + l1)λ+ 5l1 + 6 + l2. (63)

Then from the equality

λ2 + (5 + l1)λ+ 5l1 + 6 + l2 = λ2 + 50λ+ 625, (64)

we conclude that

l1 = 45, l2 = 394. (65)

(e) (3 points) Assume you want to implement the optimal state feedback controller using
the estimated velocity. How do you do this? Motivate your answer and provide enough
justification. Hint: Recall the separation principle

Solution: To implement the optimal controller u = −Kx from the estimated variables
we just use the estimated variables x̂ instead of the original ones. Recall that (available
in Nestor) the full closed loop system of the controller error and observer error reads as



dx̃1
dt
dx̃2
dt
de1
dt
de2
dt


=

[
A−BK BK

0 A− LC

]
︸ ︷︷ ︸

H


x̃1
x̃2
e1
e2

 , (66)

where x̃ = (x̃1, x̃2) denotes the error of the optimal closed loop system while e =
(e1, e2) = (x1− x̂1, x2− x̂2) denotes the observer error. Since A−BK and A−LC are
by design stable, the matrix H is also stable. This implies that all errors (controller
and observer) converge to zero.
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Exercise 5 (5 TOTAL + 5 bonus points)
In the non-linear system below,

N.L
e

K1 ∗G(p)
y

the plant G(p) is stable, and the static non-linearity NL is given by a non-linear sector with
boundaries [0, k]. The Popov plot from the linear portion is given by

−1

ω



(a) (2 points) Which of the following is/are true, motivate your answer.

1. For k = −2 the system is stable

2. For k = 2 the system is stable

3. For k = −1 the system is unstable

4. For k = 1 the system is unstable

5. None of the above.

Solution: For any k > 0 the closed-loop system will be stable. Therefore 2. is correct.

(b) (3 points) If G(p) is unstable, can we conclude the same as in (a)? Motivate your answer.

Solution: No, since the Popov criteria provides only sufficient conditions for stability.

(c) (2 bonus points) What is the relation between the Popov plot and the Nyquist plot of a
system?

Solution: Given a transfer function G(s), where s is a complex variable, the Nyquist
plot corresponds to the plot (in the complex plane) of G(ω) = G1(ω) + G2(ω)
while the Popov plot corresponds to the plot (in the complex plane) of W (ω) =
G1(ω) + ωG2(ω).

(d) (3 bonus points) Which is the biggest sector (approximately) to which the non-linearity
may belong so that the closed-loop system is globally asymptotically stable? Motivate
your answer.
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Solution: k =∞ since the Popov criteria is satisfied by a line passing through the
origin.
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Exercise 6 (10 TOTAL points)
Consider a simplified turbocharger system as shown in Figure 3.

Figure 3: A simplified turbocharger

The exhaust gas flow Qs which is connected to a capacitor (with capacitance Cf) is used to
rotate the turbocharger compressor through a series of coupling devices where the first coupling
device has the relation of

T = D1P1r

Ω = Q3/D1

(67)

and the second coupling device has the relation of

T = D2P2r

Ω = Q4/D2

(68)

In these equations D1 and D2 are coupling constants. For a simplification, let the valve 1 satisfy

Q2 = k1P1r, (69)

where k1 is a constant. The turbocharger compressor is connected to a load and an inertor,
where, for simplicity, the valve 2 satisfies

P3r = k2Q4, (70)

where k2 is a constant, and the inertor has inertance of I.
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(a) (1 point) Which are A-Type and T-Type elements and their related variables?

Solution: The elements are the fluid capacitor and the inertor. The related variables
are the pressure P1r and the flow Q4 respectively.

(b) (1 point) Write down the constitutive equations of each of the energy storing elements of
the simplified turbocharger.

Solution: The constitutive equation of the fluid capacitor is C
dP1r

dt
= Q1 while the

constitutive equation of the inertor is I
dQ4

dt
= P32.

(c) (4 points) Assume that the input u is given by the flow source Qs and the measured
output y is the flow Q4, write down the state space equation describing the turbocharger.

Solution: Since there are two energy storing elements corresponding to the capacitor
pressure P1r and the fluid flow into the into the inertor Q4, as indicated above we have:

� For the capacitor:

Cf
d

dt
P1r(t) = Q1(t) = Qs(t)−Q2(t)−Q3(t)

= Qs(t)− k1P1r(t)−D1Ω(t)

= Qs(t)− k1P1r(t)− D1/D2Q4(t)

(71)

and therefore

d

dt
P1r(t) =

1

Cf
(Qs(t)− k1P1r(t)− D1/D2Q4(t)) (72)

� For the inertor we have

I
d

dt
Q4(t) = P23(t) = P2r(t)− P3r(t)

= T (t)/D2 − k2Q4(t)

= D1/D2P1r(t)− k2Q4(t)

(73)

and therefore

d

dt
Q4(t) =

1

I
(D1/D2P1r(t)− k2Q4(t)) . (74)

From these equations and the fact that u = Qs, y = Q4 we can write the state equation[
Ṗ1r

Q̇4

]
=

[
−k1/Cf −D1/CfD2

D1/ID2 −k2/I

] [
P1r

Q4

]
+

[
1/Cf

0

]
u

y =
[
0 1

] [P1r

Q4

] (75)
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(d) (4 points) Does the state-space equation that you have found have the same input-output
behavior (or transfer function) of the following state-space equation? Motivate your
answer. [

ẋ1
ẋ2

]
=

 0 1

− D2
1

ICfD2

− k1k2
ICf

− k1
Cf
− k2

I

[x1
x2

]
+

[
0
1

]
u

y =

[
D1

ICfD2

0

] [
x1
x2

] (76)

Solution: The corresponding transfer function is given by

G(s) =
Y (s)

U(s)
= C(sI − A)−1B =

[
0 1

] [s+ k1/Cf
D1/CfD2

−D1/ID2 s+ k2/I

]−1 [1/Cf

0

]
=

D1/ICfD2

s2 + (k1/Cf + k2/I) s+ k1k2/ICf + D2
1/ICfD2

.

(77)

Note that the state-space equation given in the question corresponds to the canonical
controllable form of the transfer function. Therefore BOTH state-space representations
have the same input-output behavior.
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